skip to main content


Search for: All records

Creators/Authors contains: "Wagner, Josiah T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Current methods for non-invasive prostate cancer (PrCa) detection have a high false-positive rate and often result in unnecessary biopsies. Previous work has suggested that urinary volatile organic compound (VOC) biomarkers may be able to distinguish PrCa cases from benign disease. The behavior of the nematode Caenorhabditis elegans has been proposed as a tool to take advantage of these potential VOC profiles. To test the ability of C. elegans Bristol N2 to distinguish PrCa cases from controls, we performed chemotaxis assays using human urine samples collected from men screened for PrCa. Behavioral response of nematodes towards diluted urine from PrCa cases was compared to response to samples from cancer-free controls. Overall, we observed a significant attraction of young adult-stage C. elegans nematodes to 1:100 diluted urine from confirmed PrCa cases and repulsion of C. elegans to urine from controls. When C. elegans chemotaxis index was considered alongside prostate-specific antigen levels for distinguishing cancer from cancer-free controls, the accuracy of patient classification was 81%. We also observed behavioral attraction of C. elegans to two previously reported VOCs to be increased in PrCa patient urine. We conclude nematode behavior distinguishes PrCa case urine from controls in a dilution-dependent manner. 
    more » « less
  2. Understanding mitochondrial DNA (mtDNA) evolution and inheritance has broad implications for animal speciation and human disease models. However, few natural models exist that can simultaneously represent mtDNA transmission bias, mutation, and copy number variation. Certain isolates of the nematode Caenorhabditis briggsae harbor large, naturally-occurring mtDNA deletions of several hundred basepairs affecting the NADH dehydrogenase subunit 5 (nduo-5) gene that can be functionally detrimental. These deletion variants can behave as selfish DNA elements under genetic drift conditions, but whether all of these large deletion variants are transmitted in the same preferential manner remains unclear. In addition, the degree to which transgenerational mtDNA evolution profiles are shared between isolates that differ in their propensity to accumulate the nduo-5 deletion is also unclear. We address these knowledge gaps by experimentally bottlenecking two isolates of C. briggsae with different nduo-5 deletion frequencies for up to 50 generations and performing total DNA sequencing to identify mtDNA variation. We observed multiple mutation profile differences and similarities between C. briggsae isolates, a potentially species-specific pattern of copy number dysregulation, and some evidence for genetic hitchhiking in the deletion-bearing isolate. Our results further support C. briggsae as a practical model for characterizing naturally-occurring mtgenome variation and contribute to the understanding of how mtgenome variation persists in animal populations and how it presents in mitochondrial disease states. 
    more » « less
  3. The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D3[1,25(OH)2D3], a hormone derived from 7-dehydrocholesterol (7-DHC). VDR signaling is best known for regulating calcium homeostasis in mammals, but recent evidence suggests a diversity of uncharacterized roles. In response to incubation temperature, embryos of the annual killifishAustrofundulus limnaeuscan develop along two alternative trajectories: active development and diapause. These trajectories diverge early in development, from a biochemical, morphological, and physiological perspective. We manipulated incubation temperature to induce the two trajectories and profiled changes in gene expression using RNA sequencing and weighted gene coexpression network analysis. We report that transcripts involved in 1,25(OH)2D3synthesis and signaling are expressed in a trajectory-specific manner. Furthermore, exposure of embryos to vitamin D3analogs and Δ4-dafachronic acid directs continuous development under diapause-inducing conditions. Conversely, blocking synthesis of 1,25(OH)2D3induces diapause inA. limnaeusand a diapause-like state in zebrafish, suggesting vitamin D signaling is critical for normal vertebrate development. These data support vitamin D signaling as a molecular pathway that can regulate developmental trajectory and metabolic dormancy in a vertebrate. Interestingly, the VDR is homologous to the daf-12 and ecdysone NRs that regulate dormancy inCaenorhabditis elegansandDrosophila. We suggest that 7-DHC−derived hormones and their associated NRs represent a conserved pathway for the integration of environmental information into developmental programs associated with life history transitions in animals.

     
    more » « less